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Last week we talked about implicit graph representations.  This week we're going to 

be implementing Prim's Algorithm in two different ways to practice working with 

explicit graph representations, namely, adjacency matrices and adjacency lists.  

Remember that Prim's Algorithm grows an MST from a single node outward.  At each 

step, we add the node that's closest to the tree we've built up so far.
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Now, we can loosely classify graphs into dense graphs and sparse graphs.  Dense 

graphs are graphs where there are edges between most of the nodes.  This makes the 

adjacency matrix representation better suited for our purposes because the space 

drawback isn't as big a deal when you would already have to spend that much space 

no matter what.
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Now, if you'll remember what happens in Prim's algorithm, we're going to maintain 

the nodes of the graph in a priority queue, and then we're going to call Decrease-Key 

once for every edge, and Extract-Min once for every node.  But remember that in a 

dense graph with n nodes, we have order n^2 edges, which means we can afford to 

be inefficient in our Extract-Min calls, especially if it means we can make Decrease-

Key more efficient.
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So what kind of a priority queue should we use?  Well, I'm going to propose the 

following: We make two arrays, one that tells us whether each node has already been 

added to the MST, and one that tells us the distance from the node to our MST so far.  

We start with no nodes added, and all distances at infinity.
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We pick a node, say the first node, and set its distance to 0 to start off the algorithm.  

Now the main loop of the algorithm begins.  We scan over our array to find the 

smallest distance to a node that hasn't been added yet.
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In this case, that would be the first node.  We add it to our MST.
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Then we update the distances to all nodes that haven't been added to the MST yet.  

How do we do that?  By looping over all edges connected to our current node.  But in 

adjacency matrix format, that means all we have to do is loop over all the numbers in 

a row of the adjacency matrix, and overwrite the values in our queue if they're better, 

and if the corresponding node hasn't been added yet.
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Then we scan over the array again to find the closest node that hasn't been added 

yet.  In this case, it's the second node.
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Then we update the distances.
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We continue this pattern,
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looping over the entire array each time,
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until we've added all the nodes to our MST.
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Now how expensive is this to do?  Well, each Decrease-Key operation is just changing 

one entry in our array, so it takes constant time.  Extract-Min requires looping over 

the whole array, so it takes order n time, but because there are so many more edges 

than nodes, the total runtime is just n^2, or m.  This actually beats what we would 

get if we used a binary heap as described in lecture on Wednesday.
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Next, let's move on to sparse graphs.  Sparse graphs are ones where most possible 

edges are NOT present in the graph.  In this case, we do get asymptotic savings from 

using an adjacency list instead of an adjacency matrix.
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Now, Prim's Algorithm as described in lecture actually has a technical detail that's 

really annoying to deal with, and that's the fact that Decrease-Key is hard to 

implement in log time.  The problem is that you need to also find the key that you 

want to decrease, and that's hard to do in general.  In fact, the library implementation 

of priority queues doesn't even bother doing this.  Thankfully, there's a workaround 

that we can use for Prim's Algorithm.  What we can do is instead of maintaining a 

priority queue on the nodes, we can maintain a priority queue of edges.  This way, we 

never have to call Decrease-Key.  Instead, when we Extract-Min, we look at the nodes 

that belong to the edge, and if both of them are already in our MST, then we throw 

away the edge and try again.  When we find an edge that has a new node, then we 

add all the edges from that node to its unvisited neighbors.
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So what does a PriorityQueue look like in Java?  Well, it takes in an object that it's 

capable of comparing, which it uses to determine priority.  You can either pass in a 

comparator, or make the object itself Comparable.  This saves you from having to 

write an extra comparator class; instead, you just implement this compareTo function 

which returns a negative number, 0, or a positive number if you are smaller than, 

equal to, or larger than the argument you passed in.  A convenient shorthand for 

doing this is to take our weight and subtract the argument's weight.  Be warned, 

though, that this shorthand is susceptible to overflow, so make sure the numbers 

you're comparing aren't too far apart.  For this assignment, the numbers are safe, so 

you can get away with this.  As for the PriorityQueue class itself, notice that it calls 

insert "add" and extract-min "remove".
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So how fast is this algorithm?  Well, we're inserting each edge into the priority queue 

once, and we're extracting every edge out eventually.  This means the whole process 

is going to cost us m lg m time.  But remember that since we have at most n^2 edges, 

this is equivalent to m lg n time, which is the same as the runtime we got from the 

version taught on Wednesday.
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