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The first problem we're covering today is longest common subsequence, or LCS.  This was 

covered in detail in lecture on Wednesday, but as you might have noticed, it's relevant to 

the programming project in 161, so I'll review it here.  We're given two strings, and we 

want to find the longest subsequence of characters that they have in common.  For 

example, the subsequence "AA" exists in both of these strings, so it's a common 

subsequence.  The main observation we use is that we can focus on what we do to the last 

character in each string, knowing that we should take the optimum for the remainder of 

the two strings.  In particular, we can do one of three things: we can match the last two 

characters to each other, ignore the last character in the first string, or ignore the last 

character in the second string.  If we solve this problem for all prefixes of the two strings, in 

increasing size of the prefixes, then we'll always have the answers we depend on to 

compute our current answer.  So what we do, given two strings of length m and n, is we 

make a 0-indexed 2D array where the entry at (i, j) corresponds to the length of the LCS of 

the first i characters of the first string and the first j characters of the second string.
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Then we walk through the table from top to bottom, left to right, filling in the entries.  The 

top and left entries are all 0s.  As for the other entries, if the characters corresponding to 

the entry don't match, then we just take the bigger of the values immediately to the left of 

or above it.
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On the other hand, if the characters do match, then in addition to those two entries, we 

can also look at the entry diagonally up and left of us and add 1 to it, and see how it fares 

against the other two.
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Now the problem as stated for this week only asks you to give the length of the LCS, so all 

you need to do is return the number in the bottom right corner.  However, it's also worth 

understanding how to retrieve not only the LCS itself, but also the path through this table 

that generates it.  Yes, you can do this with a second table that stores a bunch of pointers, 

but I'm going to show you how to walk through the path just by looking at the entries of 

the table.  You start from the bottom right, and then you move to one of the entries that 

could have produced the value at your current location.  For example, this 2 in the bottom 

right matches the 2 just to the left of it, so that was one way to produce this value.
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Therefore we can move one to the left.  Notice that we also could have gone one up; both 

of these are valid choices because they just correspond to different ways of generating a 

longest common subsequence.  For now, if we can move both left or up, let's prefer moving 

left.
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Eventually we'll run out of the ability to move left, but in this case we can still move up.
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So let's do that.  Now notice that we can't move left or up.  But this number had to have 

been produced by some value, and if it wasn't made by the number to the left, or by the 

number above it, then it had to have been made by the diagonal.
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So let's move diagonally up and left.  Remember that each diagonal movement 

corresponds to matching a pair of characters.  Also notice that we didn't actually have to 

check to see whether the characters matched; we used process of elimination instead, 

saying that since we didn't fill in this table entry from the left or from above, we MUST 

have filled it in from the diagonal, which means the characters MUST match.
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Anyhow, let's continue the process.  We can't move left, but we can move up one.  Then we 

can move neither left nor up,
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so we take another diagonal, matching another character.
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Then we move left and up until we make it to the top left corner.  Once we're done, the 

diagonals line up with the longest common subsequence, which in this case is BA.
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Notice that there are other paths that we could have taken, like the one here, where we 

prefer moving up first, then diagonally, and then left only if there are no other options.  

Notice that this gives us a different common subsequence, but it's still the same length, so 

it's still a correct answer.
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Alternatively, we could prefer taking diagonals first, then lefts, and then ups, which would 

give us a different common subsequence.  Notice that even though we prefer diagonals 

over lefts, we didn't take the starred entry.  Why is that?  (The characters don't match.)  

Notice that preferring left, then up, then diagonal does something special for us in that it 

allows us to skip checking the characters before taking the diagonal.  This ONLY works if we 

prefer left then up, or up then left, before the diagonal.  If the diagonal is NOT our last 

resort, then we HAVE to check the characters first.  I'd encourage you folks to try tracing 

out the path after you're done getting the length working, so that you can actually see the 

subsequences produced.  I haven't provided data to check the subsequences, though, since 

there can be many different LCSes.
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A quick aside: This is the first assignment where you'll need to read in a String as input.  

Doing so is actually pretty simple; just use Scanner.next() to get the next word (the Scanner 

is whitespace-delimited), and then you can access the String either as an Object or by 

dumping it to a character array.
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For the required problem for this week, we're going to go over how to compute the 

permanent of a matrix.  The formal definition of the permanent of a matrix A is given here.  

This definition may look familiar to some of you, because it's very similar to the definition 

of a determinant, which is much more widely known.  Basically, the determinant of a 

matrix is the signed sum of the product of permutations of entries in the matrix, while the 

permanent is the unsigned sum.  It's interesting to note that we know how to compute a 

determinant in polynomial time using row reduction, but computing the permanent is 

known to be NP-hard.  It turns out that those alternating signs have a huge impact on the 

tractability of the problem.
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To make sure we understand exactly what the permanent is, let's look at an example.  

Remember that we said that we're summing over all permutations of entries.  What does 

that mean?  Well, let's look at one permutation, say 1, 4, 2, 3.  What this means is we go 

through the rows one-by-one, and we take the first entry, then the fourth, then the second, 

and finally the third, and we multiply all those entries together.  This gives us one product 

per permutation.  Then we sum over these n factorial permutations to get our answer.  If 

we were taking the determinant, we would multiply each product with the sign of the 

permutation before summing, but in the permanent, we sum them all directly.
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So we could solve this problem in factorial time by enumerating all the permutations.  But 

can we do better?  It turns out we can, using just exponential time and space.  Yes, I 

actually said "just" before exponential.  As you saw in homework 1, there's actually a pretty 

big gap between factorial and exponential growth, so this kind of reduction can still be 

worth it.  First, let's write our permanent in terms of permanents of smaller matrices.  

What we can do is take the expression we had before and group it into n parts, the first 

being all the permutations that start with 1, the next being all the ones that start with 2, 

and so on.  If we do this, then we see that each part contributes an amount equal to its 

corresponding entry in the first row, times the permanent of the submatrix you get if you 

delete the first row and the corresponding column. For example, the part that corresponds 

to permutations that start with 2 here equals the red entry times the permanent of the 

purple submatrix.  Now, if we were just to use this recurrence directly, we'd still have to do 

factorial work.  However, we can notice that submatrices can show up multiple times.  For 

example, the submatrix that's left over for all permutations that start with (1, 2) is the 

same as the submatrix that's left over for all the ones that start with (2, 1).  In general, to 

figure out what submatrix we want if we've fixed the first k entries of our permutation, we 

don't actually care about the order in which those entries were fixed.  All we care about is 

which entries were fixed, because they correspond to the columns we have to delete.  

Remember that because of the way we're doing this expansion, we're always deleting the 

first k rows.  This means that we actually only have 2^n subproblems, one for each possible 

submatrix that we create in this manner.
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So, how do we organize these subproblems?  Well, we can use a bit mask where the 1s 

indicate the columns that we still have, and the 0s are columns that we've deleted.  This 

means that our full permanent corresponds to the bit mask of all 1s, and to find 

subproblems, we just subtract those 1s out.  These numbers are then the numbers that we 

use to index into our table.  You can see that they range from 1 to 2^n – 1, which 

corresponds to all nonempty subsets of n elements.  To have a convenient base case, we 

can set the entry at index 0 to 1, which is saying that the permanent of a 0-by-0 matrix is 1.
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Now how do we fill this table?  Well, remember that the important thing is that whenever 

we try to fill in an entry, all of the entries it depends on have to already be filled.  In our 

case, that means when we're looking at a particular set of active columns, we need to 

make sure that we've already handled all subsets of that set.  One way that we can do this 

is to first handle all sets of size 1, then all sets of size 2, and so on and so forth.  While this 

makes a lot of intuitive sense, it's actually pretty annoying to iterate over all sets of a given 

size.  Instead, I'm going to propose the following: Just start from the bit mask 0, and count 

all the way up to 2^n – 1.  Why does this work?  Well, remember what we did to get a 

subset of our current set?  We flipped a bit from 1 to 0, which corresponds to subtracting a 

positive number from our bitmask.  That means that the subsets our current set depends 

on have a bit mask that is strictly less than that of our current set, so if we count upwards, 

we'll always compute the subsets we need first.  This is a really handy trick for subset DPs 

in general.
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A couple more notes.  First, matrix permanents can get really big really fast, since we're 

multiplying together a lot of numbers.  For this assignment, we're more interested in the 

technique used for computing the permanent than the actual result, so we're only going to 

keep the last 9 digits of the permanent around to make sure our setup is correct.  What this 

means is you should be doing all your computation using longs, and after every arithmetic 

operation, you should drop all but the last 9 digits by taking the result modulo a billion.  

This works because I've guaranteed that there won't be any negative numbers in the 

matrices I give you.  Second, because we're iterating over all the bit masks in increasing 

order, the size of the subset we're looking at isn't very well organized.  In order to figure out 

the size, we need to know how many 1s are present in our bit mask.  Thankfully, there's a 

built-in function that does just that.
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