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The first problem we're going to tackle is quicksort.  Just as all of the complexity of 

mergesort is in the merge step, not in the recursion, all of the complexity of quicksort is 

found in the partition step, so let's go over how to perform an in-place partition.  If you feel 

comfortable with the method presented in lecture on Wednesday, feel free to use that 

method; otherwise, here's another way that turns out to require much less code.  Here, 

let's suppose that we want to partition using the first element, 3, as our pivot.
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What we're going to do is we're going to build up an orange region of all the numbers 

smaller than the pivot, and a green region of all the numbers larger than the pivot, much 

like in the method presented in class.  However, instead of building one from the left and 

one from the right, we're going to put them right next to each other.  How does this work?  

We maintain two pointers, an orange pointer and a green pointer.  The orange pointer will 

track how many numbers are smaller than our pivot so far, and the green pointer will track 

how many numbers we've considered so far.
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Let's look at the first number.  It's smaller than the pivot, so what we're going to do is we're 

going to swap the numbers at the two pointers (which happens to be the same number, so 

nothing happens), 
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and then we increment both our orange pointer and our green pointer, since we got a new 

number that belongs to the orange region.  Now we look at the next number,
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which is larger than our pivot, so it belongs to the green region, so no swapping has to 

occur;

6



we just need to increment the green pointer.
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The next number is smaller, so it belongs to the orange region.  In order to put it in the 

right place,
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we swap the numbers that the two pointers are pointing to,
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and then we increment both pointers.
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We repeat this process until we've gone through the whole array.
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Every time we see a number bigger than our pivot, all we have to do is increment the green 

pointer.
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And every time we see a smaller number,
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we swap the numbers at both pointers,
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and then increment both pointers.
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Once we're done using that algorithm, our array will look something like this.  The first 

element will be our pivot, followed by a block of elements that are all NO larger than our 

pivot, followed by all the elements that ARE larger than our pivot.  This result is just like 

what happened with the in-place partition discussed in lecture.  Then, just like in lecture, all 

we need to do to put our pivot in the right place is to swap it with the last element of the 

orange block,
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like so.  Now, what if we want to choose a pivot besides the first element in the array?  

Well, before we run this partitioning algorithm, we can simply swap the pivot we want with 

the first element in the array.
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Now, you're going to be choosing your pivots at random.  I've included this slide as a quick 

reference for how to generate a random integer between 0 and n, as well as how to 

generate a random floating point number between 0 and 1.  Obviously you'll use the 

former for this problem, but the latter might come in handy in the future.  For debugging 

purposes, you might want to fix your random number generator so it gives you the same 

sequence of pseudorandom numbers each time; once the code behaves as you expect, 

then you can remove the fixed seed.
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Now, the test data I've provided you with for Quicksort includes a test case that looks 

something like this.  This case is actually kind of annoying for Quicksort to handle, because 

no matter what pivot you choose, you'll always end up with a bad split.  That is, unless you 

modify the predicate you use in your partition subroutine.  What you want to do in this 

case is whenever you run into entries that are identical to your pivot, you want to send 

roughly half of those entries to the left and the other half to the right.  I'll let you figure out 

how to do this on your own.  One trick that you might be tempted to try is to make a coin 

flip every time you come across an entry that matches your pivot.  Keep in mind, though, 

that generating random numbers is expensive, so see if you can come up with something 

less computationally intensive.
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Now, on to the required problem.  This problem has a bit of a story to it, so let's go over the 

story.  You're running a round robin tournament, which is a tournament where everybody 

plays one game against everybody else.
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Each game has one winner and one loser, which we'll represent with an arrow pointing 

from the winner to the loser.
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What we need to do in this problem is to find some ranking of all the players in the 

tournament such that the first place player beat the second place player, who beat the 

third place player, and so on and so forth.
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How would we do that?  How do we even know that such a ranking can exist?  Well, let's 

focus on a single player, Player 1 in this case.  Let's look at all the games she played.  For 

each other player, she either won against or lost to that player.

28



So let's partition the other players into 2 sets: the set of players she won against, and the 

set of players she lost to.
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Then let's recursively find rankings for the players within those two sets,
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and place Player 1 in her proper spot in this ranking.  If you want to prove that this process 

always works, you can do so with induction.  This apparently has been covered in an 

offering of 103 before, so we won't go into the details.  Notice that this process is virtually 

identical to quicksort: you pick a pivot player, partition the remaining players into the 

players before and after, recursively rank those two sets, and place the pivot player in the 

correct spot.  The only thing that actually changes is how you determine which side to put 

each player on in the partition.  If you coded quicksort up properly, you'll have to change 

very little of your code to solve this problem.  But that's not the only thing that this 

problem has in common with quicksort.  In lecture, you were presented with various proofs 

that randomized quicksort runs in expected n lg n time, all of which are far more involved 

than simply coding up randomized quicksort.  Just like quicksort, this algorithm is far easier 

to code up than it is to prove runtime bounds for.  We won't go into what those bounds are 

and why, though, since it might come up in 161 proper.
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