
Hello everyone, and welcome to CS161L, where you'll get a chance to implement a 

lot of the algorithms covered in CS161.  My name is Andy, and I'll be your instructor 

for this course.  I'm also a CA for the regular CS161 class, and I'll be responsible for 

managing the final project in that class, so this course will be good preparation for 

that project.  A quick announcement: I will be out of town next week, but I've 

arranged for substitutes to take my place in both sessions next week, so we will still 

be having class as planned.

1



Now, this course is designed to be a companion class to 161, which means that 106 is 

an indirect prerequisite.  What this means for this section is that we're going to 

assume that you're comfortable writing basic programs in C++ or Java, and have at 

least some idea of how to use their standard libraries.  Also, since section is being 

held in this computer lab, where Linux is what is installed on all the machines, we're 

going to assume that you have or can pick up some basic knowledge of the Linux 

command line.  If you made it through the Getting Started documents on the course 

web site without too much trouble, you should be ok for this class.  Speaking of, who 

here has actually worked through the Getting Started documents and gotten their 

machine set up?

2



Now, how will this course be conducted?  Well, every Wednesday, I'll post the 

problems for the week. I'd like you all to look over the problems before the session 

on Friday so you at least have a sense of what we'll be covering.  During the session, 

we'll spend the first 15 minutes or so discussing the problems, talking about coding 

techniques or pitfalls relevant to the problems, and pointing out what you should be 

observing while writing and running your code.  After that, the remainder of the time 

will be devoted to writing code.  If you come across any issue while coding, speak up, 

and we'll work through it together.  I've designed the problems with the intent that 

most of you finish coding them in this hour, so once you're done, you can submit, and 

you don't have to worry about homework.  Sometimes debugging can take a bit 

longer than planned, though, so the deadline to submit isn't until the end of the 

following Monday.

3



Now, just like in CS161, you're allowed to work in groups of up to 3 people.  

Personally, I'd recommend pairing off, as in my experience having one person at the 

keyboard and the other person double checking what's typed seems to be most 

effective.  This class only officially supports Java, which means that any code that 

shows up on these slides will be written in Java.  Now, I know that CS106B and 

CS106X are both conducted in C++, so many of you are more comfortable in C++ than 

in Java.  For the most part, the problems we cover in this class will use only basic 

language features, which means the C++ code and the Java code won't look all that 

different, so if you can write the former, you can write the latter.  That said, if you 

really want to code in C++, I will accept submissions in that language, as long as they 

meet all of the problem requirements.  Each week, we may cover multiple problems, 

but only one of those problems will be required.  I still recommend working through 

all of them, because often the non-required ones will be useful for understanding the 

required one.  In order to pass this course, you need to solve at least 7 weeks' worth 

of problems.  This means you can skip 2 problems if you want to.  Notice that there's 

no late policy in this class though; I will not accept late submissions under any 

circumstances.  Also, a lot of the algorithms that we're going to cover in this course 

are classic algorithms.  That means that if you were to Google search for any of these 

problems, you could almost certainly find code that does exactly what you want.  But 

that defeats the purpose of this course, which is to give YOU practice in writing 

common algorithms.  So please don't do that; write all the code yourself.

4



One last note before we begin with the course material:  This is a new course, so I'd 

love to hear any thoughts you have on how the course should be run.  If you have 

thoughts on the pacing of the course, or if there's an algorithm you really want to see 

covered, or whatever, come talk to me after class, or shoot me an email.  If you're not 

comfortable talking with me directly, I will be sending out a survey halfway through 

the course that's completely anonymous.

5



All right, let's get started.  As you know, CS161 is a theory course, so the first thing we 

should do is ask ourselves, "Why, in a theory class, do we care about coding up the 

algorithms we learn? Isn't that part just mechanical?"  Well, that's a fair question.  

After all, as this quote by the famed Donald Knuth would suggest, it IS often the case 

that we'll stop after we've successfully discovered our algorithm.

6



See, there's this ideal approach to problem solving that computer science theory 

courses would have you believe.  You're given a problem, which you think about for a 

while until you come up with an idea to solve it.  You then formalize your idea and 

prove its correctness, and then at that point you have an algorithm that you know 

would work if you ever sat down and coded it up.  Everything after that is "just 

engineering".

7



But if you were to ask around a bit more, you would find plenty of people who would 

tell you that when you have an idea, you should code it up and see how it works.  

After all, if it works well, you can use it as is and worry about why it works later; and if 

it doesn't work, then your proof wouldn't have gone anywhere anyway.  Once you 

have code that backs up your idea, proving it works is "just math".  Now, this 

shouldn't surprise us that there are these two trains of thought; after all, we're 

computer scientists, and we can think of computer science as living halfway between 

math and engineering.  The thing is, there's something wrong with both of these 

pictures.  Note that in both cases, we have this magic step where we come up with an 

idea for how to solve the problem.  How does this step even work?  Is it inspiration?  

Do you just bang your head against the wall until a solution comes to mind or you run 

out of brain cells?

8



The thing is, these ideas don't come from nowhere; in fact, when we're trying to 

solve a problem, often we'll have to attack at it from all sides, hoping that some 

direction will allow us to make some progress.  Sometimes we might write some 

experimental code to see if we can discover some patterns in the problem that we 

can exploit.  Other times we'll research similar problems and read through their 

proofs to see if anything there applies to our problem.  All of these parts feed back 

into each other, so even if all we care about is finding a provably correct solution, we 

can still benefit from coding up our ideas.

9



So here's what I'm hoping you'll get out of this course.  First, we're going to spend a 

good chunk of time turning the descriptions of algorithms that we come across in 

class into actual runnable code.  Often we'll discover that there are some nasty 

implementation details that we shoved under the rug in the process of our high-level 

description.  We'll also take a look at some algorithms not covered in class.  Next, 

we'll cover some tricks for being able to write what we call "scratch code" quickly and 

easily.  In this course, we're going to focus on using code as a tool for understanding 

the algorithm, so the emphasis will be on how to do so with minimal effort.  We're 

also going to spend some time covering practices that will make our code more 

efficient, even if it's just by a constant factor that would get swallowed up in big-O 

analysis.  And finally, we're going to use some coding experiments to motivate 

refining our theoretical understanding of a problem to better fit what we observe in 

practice.

10



Before we get going, let's just briefly mention what we WON'T be covering in this 

course.  We are NOT going to be writing industrial strength code.  That means, for 

example, that we will assume that our input is always well-formed, and we'll handle 

input in a way that's convenient for us, even if it's not scalable.  We're also not going 

to place any focus on coding style, nor are we going to spend time designing our code 

in such a way that we'll be able to plug it into other projects easily.  Don't get me 

wrong, these are all valuable skills, and if you want to pick these skills up, there's a 

great course called CS108 that will teach them to you.  But that's not this course.

11



All right, now to go over the problems we'll be solving today.  The first two problems 

are warmups of sorts, to get you familiar with the format we'll we be using 

throughout the quarter.  The problem statements will always be posted on the web 

site in Google doc form, and you'll wanna have them handy for when you're coding 

the problems up.  I'm not going to repeat material that's covered in 161 proper, so if 

you need to look up how insertion or mergesort work, you should refer to the 161 

slides or textbook.  The code that the Getting Started document had you write is a 

great starting point for both problems.  For insertion sort in particular, all you need to 

do is modify the main method to read multiple test cases instead of a single one, and 

modify the sort method to use insertion sort instead of calling the library sort.

12



Mergesort is a little trickier to code, though I've been told that implementing 

mergesort is a standard 106 assignment, so this should be review for most of you.  

Again, refer to the 161 materials if you need them.  One thing to keep in mind when 

working with arrays in a more involved algorithm is to pick a convention and stick to 

it.  Write the convention down somewhere, and every time you write a bit of code, 

make sure it conforms to that convention.  This is especially useful when you're trying 

to figure out what the pre and post conditions of a recursive function are going to be.  

For this problem, I'm going to recommend that your recursive sort function take in 

the whole array, as well as a range, and that the function mutates the input array so 

that that range is guaranteed to be sorted at the end of the function.  Note that this 

does NOT mean that you have to do the merging in place; in fact, you should NOT try 

to do that.  Instead, you should perform the merge using a new array you allocate, 

and then copy the merged data back into the original array at the end.  Another 

convention that's useful to set is whether range bounds are inclusive or exclusive.  

The convention I prefer is for the start to be inclusive and the end to be exclusive.  If 

you try it out, you'll see that this convention keeps you from having to add or subtract 

1's from bounds for a lot of things you want to do, like split an array in half.

13



One last hint on coding this problem up.  When you're doing the merge part of 

mergesort, you might be tempted to look for some class that handles the "add this to 

the end of the list" step nicely.  If you look around, you'll find this very standard class 

called ArrayList that does just that.  An ArrayList is a Java Collection that works like a 

resizable array, allowing you to append to the end of an array and automatically 

managing the size behind the scenes, much like a vector in C++.  This can be very 

convenient, but it comes at a performance cost, especially when you try to use it in 

place of a primitive array.  Why is that?  You can't actually use Java Collections with 

primitives directly; instead, there are these wrapper objects for all of the primitive 

types.  There's this thing called autoboxing which allows you to use int and Integer 

basically interchangeably, but that hides the fact that working with Integers is much 

more expensive than working with ints.  So in case you ever wondered why some 

Java program uses 10 times as much memory as a C++ program that looks almost 

identical, this is a pretty common reason why.

14



Now, why are we coding up both insertion sort and mergesort when we know one is 

asymptotically better than the other?  Well, as mentioned in the 161 lecture, 

asymptotic performance doesn't necessarily correspond to practical performance, 

especially when the size of the input is limited.  But the main thing I want to focus on 

is a general technique for verifying whether you've successfully coded up a tricky 

algorithm.  Insertion sort is a lot easier to understand and to code up than mergesort.  

If you look at the data files I've provided you, I haven't actually given you the answers 

to the larger input.  You're going to have to figure out those answers for yourself.  The 

way you do this is you run insertion sort on the medium file to generate ground truth.  

Then you run mergesort on it to see whether you get the same answer.  Once you're 

satisfied that they match, then you can move to the large file, which is too big for 

insertion sort to process in a reasonable amount of time.

15



Now let's move on to the main problem for this week, which connects insertion sort 

to merge sort.  You might remember from the first day of class that insertion sort has 

a wide gap between its best case run time and its worst case run time, depending on 

the input.  Let's see if we can find some way of explaining this as a property of the 

input, independent of the algorithm.  We know that the runtime of insertion sort is 

closely tied to the number of swaps it takes to sort the array.  But talking about swaps 

is still connecting the input to the specific algorithm.  Instead, we're going to look at 

this thing called an inversion.  An inversion in an array is a pair of elements that are 

out of order.  For example, the 3 and the 1 here are an inversion, as are the 8 and the 

7.  Notice that this definition doesn't depend on any algorithm; it's intrinsic to the 

array itself.  What kind of an array has the smallest possible number of inversions?  

(Sorted.)  How many does it have?  (0.)  What kind of an array has the largest possible 

number of inversions?  (Reverse sorted.)  How many does it have?  (n choose 2).  

Now, what does this have to do with insertion sort?  Well, each time we do a swap in 

insertion sort, we reduce the number of inversions in the array by exactly one, since 

we only swap adjacent numbers.  Also, we stop when the array is sorted, which is 

when we're out of inversions.  That means that the number of swaps we do is exactly 

the same as the number of inversions in the original array.  Now suppose I asked you 

to count the number of inversions in an array.  One thing you could do is run insertion 

sort and count how many swaps it makes.  But can we do better?

16



Of course we can; I wouldn't ask otherwise.  Let's try a divide-and-conquer approach 

to this problem.  So we'll start by splitting the array down the middle.  Let's suppose 

we recursively compute the number of inversions in the left and right halves of the 

array.  Then the only inversions that are left are the ones where the first element is in 

the left array and the second element is in the right array, which we'll call blue-red 

inversions to match the picture.  But how can we count these?  It still looks like we 

have to check all the pairs.  Notice, though, that if we change the ordering of 

elements within one of the halves, we don't actually change the number of blue-red 

inversions.

17



So let's sort the two halves.  We'll worry about how much this costs later.  Does this 

give us anything useful?  Well, let's count the number of blue-red inversions that each 

red element belongs to.

18



The 2 belongs to 3 blue-red inversions, namely with the 3, 4, and 8.

19



The 5 belongs to 1 inversion, with just the 8.  Same goes for the 6 and 7.  Notice that 

for each red element, the blue elements that it participates in inversions with, which 

are the blue elements it's smaller than, belong to some range in the blue array that 

starts in the middle and goes all the way to the end.  Furthermore, as we advance 

through the red elements, the range of blue elements it's smaller than shrinks.  So we 

could imagine stepping through each of the halves, advancing one pointer or the 

other depending on which value was smaller, and adding up the size of the remainder 

of the first half as we go along.  But this stepping process should remind you of the 

merge step of mergesort, because it is EXACTLY that.  Remember that we mentioned 

earlier that we wanted to sort the two halves.  That means when we're done with 

ourselves, our entire array also needs to be sorted.  So what we're going to do is 

we're going to modify mergesort to track the number of inversions in the array, sort 

of like how we first considered modifying insertion sort to track the inversions in the 

array.

20



Now, just like when you were working on sorting, you can use your insertion sort 

implementation to have a trustworthy count of the number of inversions for the 

medium input file, and then use that to check the correctness of your modified 

mergesort.  There is one more detail that you need to worry about, though.  The 

problem statements will have input bounds which you can use to determine what is 

or is not a reasonable approach.  For example, if the largest number that could 

appear in the array to sort were bigger than about 2 billion, you'd need to use a long 

instead of an int.  But when coding up a problem like this, it's not enough to just 

check the input numbers.  You also have to check how big any number that is 

produced can be.  The problem specification for inversion counting says there can be 

up to a hundred thousand numbers.  Now remember we said an array of size n could 

have up to n choose 2 inversions.  What's a hundred thousand choose 2?  (~5 billion.)  

So can you use an int to store the answer?  (No.)  Make sure your function returns a 

long instead of an int.  For this assignment, I've given you the expected output on the 

large input so you can check your work, including a case that would fail if you used an 

int instead of a long; that won't necessarily be true in the future, though, so it's 

important to think through the bounds that are given for the problems.  All right, 

that's all the slides I have for today; the Getting Started on the Myth Cluster 

document on the course web site has the instructions for how you can access this 

data, and then you can begin on today's problems.  If you have any questions, I'll be 

right here to answer them.

21


